The electrochemical approach to concerted proton--electron transfers in the oxidation of phenols in water.

نویسندگان

  • Cyrille Costentin
  • Cyril Louault
  • Marc Robert
  • Jean-Michel Savéant
چکیده

Establishing mechanisms and intrinsic reactivity in the oxidation of phenol with water as the proton acceptor is a fundamental task relevant to many reactions occurring in natural systems. Thanks to the easy measure of the reaction kinetics by the current and the setting of the driving force by the electrode potential, the electrochemical approach is particularly suited to this endeavor. Despite challenging difficulties related to self-inhibition blocking the electrode surface, experimental conditions were established that allowed a reliable analysis of the thermodynamics and mechanisms of the proton-coupled electron-transfer oxidation of phenol to be carried out by means of cyclic voltammetry. The thermodynamic characterization was conducted in buffer media whereas the mechanisms were revealed in unbuffered water. Unambiguous evidence of a concerted proton-electron transfer mechanism, with water as proton acceptor, was thus gathered by simulation of the experimental data with appropriately derived theoretical relationships, leading to the determination of a remarkably large intrinsic rate constant. The same strategy also allowed the quantitative analysis of the competition between the concerted proton-electron transfer pathway and an OH(-)-triggered stepwise pathway (proton transfer followed by electron transfer) at high pHs. Investigation of the passage between unbuffered and buffered media with the example of the PO(4)H(2)(-)/PO(4)H(2-) couple revealed the prevalence of a mechanism involving a proton transfer preceding an electron transfer over a PO(4)H(2-)-triggered concerted process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic reactivity and driving force dependence in concerted proton-electron transfers to water illustrated by phenol oxidation.

Three experimental techniques, laser flash photolysis, redox catalysis, and stopped-flow, were used to investigate the variation of the oxidation rate constant of phenol in neat water with the driving force offered by a series of electron acceptors. Taking into account a result previously obtained with a low-driving force electron acceptor thus allowed scanning more than half an electron-volt d...

متن کامل

Proton-coupled electron transfers in biomimetic water bound metal complexes. The electrochemical approach.

Water-bound metal (M) complexes play a central role in the catalytic centers of natural systems such as Photosystem II (PSII), superoxide dismutase, cytochrome c oxidase and others. In these systems, electron transfer reactions involving the metal center are coupled to proton transfers. Besides its fundamental interest, comprehension of these reactions and of possible bio-inspired catalytic dev...

متن کامل

Reorganization energies and pre-exponential factors in the one-electron electrochemical and homogeneous oxidation of phenols coupled with an intramolecular amine-driven proton transfer.

Temperature variations of the kinetics of the electrochemical and homogeneous oxidation of the title compounds give rise to Arrhenius plots, the slopes of which give access to the heavy-atom (including solvent) reorganization energies. Information on the role of proton transfer in the dynamics of the concerted proton-electron transfer reaction (CPET) is potentially contained in the pre-exponent...

متن کامل

Concerted heavy-atom bond cleavage and proton and electron transfers illustrated by proton-assisted reductive cleavage of an O-O bond.

Electron transfer may be concerted with proton transfer. It may also be concerted with the cleavage of a bond between heavy atoms. All three events may also be concerted. A model is presented to analyze the kinetics of these all-concerted reactions for homogeneous or electrochemical reduction or oxidation processes. It allows the estimation of the kinetic advantage that derives from the increas...

متن کامل

Electrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells

In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 43  شماره 

صفحات  -

تاریخ انتشار 2009